
©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.6 Placing a Class in a Separate File for

Reusability (cont.)

• Throughout the header (Fig. 3.9), we use
std:: when referring to string (lines 11,
18, 24 and 37), cout (line 33) and endl (line
34).

• Headers should never contain using
directives or using declarations (Section
2.7).

• To test class GradeBook (defined in
Fig. 3.9), you must write a separate source-
code file containing a main function (such as
Fig. 3.10) that instantiates and uses objects of
the class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.6 Placing a Class in a Separate File for

Reusability (cont.)

• To help the compiler understand how to use a
class, we must explicitly provide the compiler
with the class’s definition
– That’s why, for example, to use type string, a program

must include the <string> header file.

– This enables the compiler to determine the amount of
memory that it must reserve for each object of the class and
ensure that a program calls the class’s member functions
correctly.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.6 Placing a Class in a Separate File for

Reusability (cont.)

• The compiler creates only one copy of the class’s member
functions and shares that copy among all the class’s objects.

• Each object, of course, needs its own data members,
because their contents can vary among objects.

• The member-function code, however, is not modifiable, so
it can be shared among all objects of the class.

• Therefore, the size of an object depends on the amount of
memory required to store the class’s data members.

• By including GradeBook.h in line 4, we give the
compiler access to the information it needs to determine the
size of a GradeBook object and to determine whether
objects of the class are used correctly.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.6 Placing a Class in a Separate File for

Reusability (cont.)

• A #include directive instructs the C++

preprocessor to replace the directive with a

copy of the contents of GradeBook.h before

the program is compiled.

– When the source-code file fig03_10.cpp is

compiled, it now contains the GradeBook class

definition (because of the #include), and the

compiler is able to determine how to create

GradeBook objects and see that their member

functions are called correctly.

• Now that the class definition is in a header file

(without a main function), we can include that

header in any program that needs to reuse our

GradeBook class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.6 Placing a Class in a Separate File for

Reusability (cont.)

• Notice that the name of the GradeBook.h header file in
line 4 of Fig. 3.10 is enclosed in quotes (" ") rather than
angle brackets (< >).
– Normally, a program’s source-code files and user-defined header

files are placed in the same directory.

– When the preprocessor encounters a header file name in quotes, it
attempts to locate the header file in the same directory as the file in
which the #include directive appears.

– If the preprocessor cannot find the header file in that directory, it
searches for it in the same location(s) as the C++ Standard Library
header files.

– When the preprocessor encounters a header file name in angle
brackets (e.g., <iostream>), it assumes that the header is part of
the C++ Standard Library and does not look in the directory of the
program that is being preprocessed.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.6 Placing a Class in a Separate File for

Reusability (cont.)

• Placing a class definition in a header file reveals the entire
implementation of the class to the class’s clients.

• Conventional software engineering wisdom says that to use an object of
a class, the client code needs to know only what member functions to
call, what arguments to provide to each member function and what
return type to expect from each member function.
– The client code does not need to know how those functions are implemented.

• If client code does know how a class is implemented, the client-code
programmer might write client code based on the class’s
implementation details.

• Ideally, if that implementation changes, the class’s clients should not
have to change.

• Hiding the class’s implementation details makes it easier to change the
class’s implementation while minimizing, and hopefully eliminating,
changes to client code.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.7 Separating Interface from

Implementation

• Interfaces define and standardize the ways in

which things such as people and systems

interact with one another.

• The interface of a class describes what services

a class’s clients can use and how to request

those services, but not how the class carries

out the services.

• A class’s public interface consists of the

class’s public member functions (also

known as the class’s public services). ©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.7 Separating Interface from

Implementation (cont.)

• In our prior examples, each class definition contained the
complete definitions of the class’s public member functions
and the declarations of its private data members.

• It’s better software engineering to define member functions
outside the class definition, so that their implementation details
can be hidden from the client code.
– Ensures that you do not write client code that depends on the class’s

implementation details.

• The program of Figs. 3.11–3.13 separates class GradeBook’s
interface from its implementation by splitting the class definition
of Fig. 3.9 into two files—the header file GradeBook.h
(Fig. 3.11) in which class GradeBook is defined, and the
source-code file GradeBook.cpp (Fig. 3.12) in which
GradeBook’s member functions are defined.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.7 Separating Interface from

Implementation (cont.)

• By convention, member-function definitions

are placed in a source-code file of the same

base name (e.g., GradeBook) as the class’s

header file but with a .cpp filename

extension.

• Figure 3.14 shows how this three-file program

is compiled from the perspectives of the

GradeBook class programmer and the client-

code programmer—we’ll explain this figure in

detail. ©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.7 Separating Interface from

Implementation (cont.)

• Header file GradeBook.h (Fig. 3.11) is similar to the one
in Fig. 3.9, but the function definitions in Fig. 3.9 are
replaced here with function prototypes (lines 11–14) that
describe the class’s public interface without revealing the
class’s member-function implementations.

• A function prototype is a declaration of a function that tells
the compiler the function’s name, its return type and the
types of its parameters.

• Including the header file GradeBook.h in the client code
(line 5 of Fig. 3.13) provides the compiler with the
information it needs to ensure that the client code calls the
member functions of class GradeBook correctly.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

